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We illustrate an approach to statistical model and sequential hypothesis designed to the automatic target
recognition (ATR) problem for active imaging LADAR. The key to this approach is using multihypothesis
sequential tests to reduce the number of target hypotheses under consideration as more observed data
are processed. The approach is potentially useful when sensor data are plentiful but computation time
and processing capability are constrained. We experimentally demonstrate that the proposed recognition
approach can resolve the military ground vehicle recognition problem of active imaging LADAR with a
high recognition rate.
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The battlefield scenario continues to grow in complexity
as the use of high-resolution sensors and precision strike
weapons has forced the increased use of concealment and
camouflage technology to improve weapon survivability.
Thus, automatic target recognition (ATR) capability is
becoming increasingly important to the Defense Commu-
nity. There are two fundamental challenges in ATR for
military applications. The first is the massive data loads
generated by modern high-resolution sensors, which can
quickly escalate to unmanageable proportions. The sec-
ond challenge is camouflage, concealment, and deception,
this further increases the complexity of ATR and moti-
vates the need for robust techniques[1].

A promising approach to tackle these challenges is
LADAR imagery[2]. Active imaging LADAR typically
provides both intensity and range images. Intensity im-
ages give an indication of target material. The range im-
ages provide explicit three-dimensional (3D) information
about targets. This 3D data contains geometric invari-
ant properties of targets and theory avoids the types of
distortions and ambiguities created by two-dimensional
(2D) sensors. Additionally, active imaging LADAR pro-
vides foliage and camouflage penetration. This simplifies
foreground and background clutter removal, facilitates
target detection and segmentation, and yields higher
recognition rates and lower false alarms rates. There
is considerable interest in developing robust 3D ATR
technology as LADAR sensors become more widely avail-
able, and many approaches have been developed for the
purposed of target recognition based on LADAR data.
Recognition methods using LADAR intensity informa-
tion or the combined range and intensity information,
can be found for example in Refs. [3, 4], and here we fo-
cus on the methods only using LADAR range data which
usually represented as “point cloud”.

Previous works on automatic target recognition in
LADAR is to convert the 3D space to a more simple
2D coordinate space. These recognition algorithms take
advantage of the relatively large amount of processing
tools in the 2D image analysis field. Vasil et al.[5] used
spin images for 3D LADAR data recognition. In spin-

image-based representations every point in a cloud will be
associated with a representative 2D image that projects
surrounding points with a locally referenced coordinate
system. The efficiency of their approach is limited how-
ever, as it involves analyzing and classifying data through
several layers of filters and iterative processes in a point
by point basis. Grönwall et al.[6−8] used general 3D
point scatterer in their work, which focuses on recog-
nizing ground vehicles. Their approach is based on the
assumption that man-made objects of complex shape can
be decomposed into a set of rectangles. Many other
LADAR range data based object recognition approaches
are reviewed in Refs. [6, 9].

Recently, statistical approaches are usually found in
the literature dealing with ATR based on LADAR range
imagery[10−14]. Rather than treating data sets as the out-
come of deterministic measurement processes, statistical
approaches treat measurements as random variables un-
der particular distributions in order to model observation
uncertainty. The most important advantage of the sta-
tistical approaches is that once the prior knowledge and
the assumptions about the data are given, the statistical
approaches always give consistent and concise solutions
to problems of detection, classification and parameter es-
timation by application of basic principles of statistical
inference.

One such approach revolves around the use of a min-
imum probability of error decision rule to compute the
likelihood that a set of 3D observations (such as point
cloud) arose from any one of a number of known pos-
sible targets. Under this decision rule, however, likeli-
hoods must be calculated for every component point in
the cloud against each candidate target hypothesis. Ap-
plying this scheme to the practical application of recog-
nizing real-world vehicles, an individual point-wise like-
lihood calculation necessitates a surface integral over a
non-trivial figure. The number of these costly computa-
tions scale linearly with each data point processed and
each target hypothesis tested. Thus, it is very desirable
to reduce the number of times new likelihoods are evalu-
ated.
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One way of reducing the number of likelihoods com-
puted is to use sequential hypothesis testing. Many au-
thors have reported on direct multi-hypothesis extensions
of the basic SPRT. Unfortunately, it can also be shown
that this type of optimality cannot extend to problems
with more than two hypotheses. That is, no sequential
test can minimize the ASN, subject to upper bounds on
the probabilities of error, simultaneously across all true
hypotheses. An approach to applying sequential multihy-
pothesis tests was elucidated by Baum et al.[15], wherein
they studied a generalization of sequential probability ra-
tio test (SPRT) to more than two hypotheses that is mo-
tivated by Bayesian setting. This multihypothesis SPRT
(MSPRT) was shown to be asymptotically optimal rela-
tive not only to the expected sample size but also to any
positive moment of the stopping time distribution, when
the error probabilities or, more generally, risks associated
with incorrect decisions are small[16,17].

In this letter, we use the statistical approaches and
MSPRT algorithm with the aim of reducing computa-
tion. The focus of our work is on using 3D active imag-
ing LADAR point cloud data, and developing 3D ATR
algorithm for military ground vehicle recognition.

Let the surface of an target denoted S ⊂ R3. A
point X

∗ = [X∗
1 , X∗

2 , X∗
3 ]T ∈ S is randomly selected for

measurement according to the density pX∗|Θ,S (X∗ |θ, S )
when the relative pose between the target and LADAR
is θ. Let X = [X1, X2, X3]

T denote the measurement
location of the surface point X

∗, and model the obser-
vation as X = X

∗ + N , where N is an additive noise
term that follows a multivariate Gaussian distribution
with zero mean and covariance matrix

∑
θ,S. The con-

ditional probability density function for X is[12]

pX|Θ,S,X∗ (x |θ, S, x∗ ) =
1

(2π)3/2 |
∑

θ,S|
1/2

· exp

[
−

1

2
(x − x∗)T

∑
−1
θ,S

(x − x∗)

]
. (1)

Given these conditional densities, the probability den-
sity function for an observation X given that surface S
is measured with relative pose θ is

pX|Θ,S (x |θ, S ) =

∫

x∗∈S

pX|Θ,S,X∗

· (x |θ, S, x∗ )pX∗|Θ,S (x∗ |θ, S )dx∗. (2)

This expression reflects the fact that a given obser-
vation x could have resulted from any point x∗ on the
surface S, the likelihood of which depends on how likely
it is that x∗ was measured and that additive noise would
have resulted in the corresponding observation x. The
integral of all such points x∗ gives the likelihood that x
could have arisen from a measurement of S along θ.

Given a set of points and corresponding relative pose
X = [(Xk, θk)]Kk=1, where the measured points are con-
ditionally independent given the object from which they
were measured. Classification is performed by finding
the target m ∈ {1, 2, · · · , M} that most likely resulted
in the measured point-cloud. The possibility that the
data were drawn from the mth distribution is referred to
as hypothesis m, denoted Hm. The possibility that the

data was drawn according to some other unknown distri-
bution is referred to as the null hypothesis, denoted H0.

A sequential test procedure is a pair (NS , φS),
where NS(X1, X2, · · · ) is called a stopping rule, and
φS is a terminal decision function, maps observations
X1, X2, · · · , XK to one of the M distributions. For
the two-hypothesis case, the sequential probability ra-
tio test (SPRT) has been shown to minimize the aver-
age sample number (ASN) over all tests that have class
conditional probabilities of error no greater than some
specified ε1 and ε2, regardless of which hypothesis is true.
At each stage, the SPRT calculates the likelihood ratio
of all available data and compares the result against two
threshold values. If the likelihood ratio is smaller than
the minimum threshold or greater than the maximum
threshold, the corresponding hypothesis is selected. If
the ratio lies between the two thresholds, the data are
taken to be ambiguous, and additional data is collected.
The test then repeats with additional data[13].

Like the SPRT, the multihypothesis SPRT (MSPRT)
compute the likelihood of the entire data collection un-
der each hypothesis at every stage. By dropping unlikely
hypotheses from further consideration, the number of hy-
potheses, and thus the amount of processing for each new
data sample, decreases with each stage.

Suppose that when Hm is true, we use the data model
described, the log-likelihood of surface Sm is

Lk
m(Sm;X ) =

∑K

k=1
log[pX|Θ,S (xk |θk, Sm )], (3)

where Sm is the surface of target m.
Let F k

m(l) denote the cumulative distribution function
(CDF) of Lk

m(Sm;X ) under the assumption that Hm is
true. Optimal hypothesis testing algorithm are based on
the fact that when Hm is not true, we expect the log-
likelihood hypothesis Lk

m(Sm;X ) to be small. Assuming
F k

m[Lk
m(Sm;X )] = α, there is a 100α percent probability

that by pure chance alone an even less likely sequence
of data would be observed if Hm were in fact true. This
can form the basis of a discrimination test for whether
or not to drop Hm at stage N .

So the whole process of recognition algorithm is as
follows[13].

Step 1: define α to be the largest tolerable false rejec-
tion rate for the problem.

Step 2: initialize the stage number k = 0 and let
M0 = {1, 2, · · · , M} to be set of target classes initially
under consideration.

Step 3: increment k by a pre-specified value, collect ob-
servation Xk and compute Lk

m(Sm;X )(Eq. (3)) for each
m ∈ M .

Step 4: let Mk = {m ∈ Mk−1
∣∣F k

m[Lk
m(Sm;X )] > α}

be the set of target classes still under consideration after
stage k.

Step 5: if
∣∣Mk

∣∣ > 0, report.

(a) m̂ = argmaxm∈Mn Lk
m(Sm;X ) as the most likely

hypothesis found at the end of stage k;
(b) F k

m[Lk
m(Sm;X )] as the significance of that hypoth-

esis;
(c) Mk as the set of feasible alternatives.
Step 6: if

∣∣Mk
∣∣ = 0, report that all of the known target

hypothesis have been rejected.
Step 7: if

∣∣Mk
∣∣ > 1 go to step 3, otherwise terminate.
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For the study of our ATR algorithm, we used the
Georgia Tech LADAR simulator[18] to generate the raw
point cloud data. We use eight specific of interest, con-
sisting of military ground vehicles ranging from tanks
to camion and armored car. Computer Aided Design
(CAD) models of the specific targets are shown in Fig. 1.
The model library contains two multi-vehicle targets-
classes, namely tanks and Armored Personnel Carriers
(APCs). The tank class is composed of the M1-A1, M60
and WMCVUN. The APC target class includes the M2-
A2, GMC, Hemtt, Willys and Hummer vehicles. For
each target, there are 72 orientations, corresponding to
the aspect angles of 0◦, 5◦, · · · , 355◦ in azimuth.

Based on the above CAD models, a target model li-
brary was constructed to simulate an ideal 3D LADAR
point clouds data of each target. Each of these eight tar-
gets were generated by LADAR simulator at 10 different
ranges: 100, 200, · · · , 1 000 m. At each range, point
clouds were acquired for 4 different target poses: front
(0◦), front left corner (45◦), left side (90◦), and back left
corner views (135◦). Measurement points were collected
all around each model, expect for the undersides where
is not observed by the sensor. Examples of Simulated
point clouds from CAD models (shown in Fig. 1) at 200
meters and 45◦ poses were shown in Fig. 2.

Fig. 1. Target CAD models.

Fig. 2. LADAR point clouds simulated from CAD models.

Fig. 3. Average recognition rate versus range.

In order to avoid redundant computation and expedite
experimental runs, all the log-likelihoods corresponding
to every point-cloud/target-hypothesis pair were com-
puted offline prior to the experiments. Sample means
and variances were also pre-computed from random
1000-point sampling of the likelihoods corresponding
to the correct classification under every target hypoth-
esis. These likelihoods sets were shuffled point-wise at
the beginning of each experimental trial to simulate the
unordered nature of collected data. A 5% significance
level is set for most of the experiments as that was the
common value found in the literature.

In the experiment, target truth was known prior to
data collection. We assume the entire target could be
seen. As the number of measured points is limited by the
LADAR system and operational conditions, a LADAR
system working at close range can acquire more points
on target than when working at large distances. Thus,
the number of points on target is lower in longer range.

The average recognition rate versus range is presented
in Fig. 3. Figure 3 shows that the proposed algorithm
successfully identified nearly all targets in all poses up
to 500 m. The performance starts to drop past 500 m
and reaches 72% at 1 000 meters. This due to rapidly
decreasing the number of measured points will result in
lower recognition accuracy. These results demonstrate
that the ATR algorithm works very well with simulated
data.

Table 1 presents the recognition confusion matrix ob-
tained from the comparison of model library to each of
target scenes for all ranges combined. The left column
represents the input target vehicle and the top row rep-
resents a target scene to model library comparison. For
instance the first row contains the comparison between
a M1-A1 scene measurement and the model library. The
recognition confusion matrix in Table 1 resembles an
identity matrix, which would be the ideal result. An-
alyzing the failure cases demonstrates that the system
performance degrades gracefully with decreasing data
quality. Even when the system does not select the right
vehicle, it selects objects that are similar in shape most
of the time.

To evaluate the performance of our algorithm, we pro-
pose to compare it with the spin-image surface-matching
algorithm presented in Ref. [5]. The experiment results
are summarized in Table 2. As we can notice, the av-
erage recognition time per model of our method is ap-
proximately 3 s on a Windows XP workstation with CPU
speed of 2.8 GHz and 1 GB of memory. To compare with,
the algorithm presented in Ref. [5] lasted 137 s under the
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Table 1. Recognition Confusion Matrix

M1-A1 M60 WMCVUN M2-A2 GMC Hemtt Willys Hummer Unknown Total Total Recognition

Pass Scene Rate (%)

M1-A1 33 3 2 2 0 0 0 0 0 33 40 82.5

M60 4 32 3 0 0 0 0 0 1 32 40 80

WMCVUN 1 2 35 2 0 0 0 0 0 35 40 87.5

M2-A2 3 1 1 34 0 0 0 0 1 34 40 85

GMC 0 0 0 0 37 0 2 0 1 37 40 92.5

Hemtt 0 0 0 0 0 39 0 0 1 39 40 97.5

Willys 0 0 0 0 2 0 34 4 0 34 40 85

Hummer 0 0 0 0 1 0 3 35 1 35 40 87.5

Table 2. Comparison of ATR Performance between Two Methods

Method
Average Recognition Rate (%) Average Recognition

M1-A1 M60 WMCVUN M2-A2 GMC Hemtt Willys Hummer Time per Model (s)

Proposed Algorithm 82.5 80 87.5 85 92.5 97.5 85 87.5 3.02

Algorithm in Ref. [5] 85 76 87 91 96 99 81 92 137.5

same conditions. In our algorithm, the log-likelihoods
and sample means and variances were computed offline,
as the algorithm in Ref. [5] needs to create spin-image and
matching making its recognition time more slowly. Note
that the approach in Ref. [5] considers all point-clouds
and all hypotheses, making its average recognition rate a
bit higher than our algorithm in some scenes.

In conclusion, we present a sequential hypothesis test-
ing algorithm based on statistical approaches for the
recognition of targets in LADAR point clouds data. The
proposed recognition algorithm performance is success-
fully demonstrated on eight 3D models of potential tar-
gets. 8 military ground vehicles are acquired during ex-
periment with LADAR Simulator. 3D point clouds data
of targets are acquired at ranges from 100 to 1 000 m in 4
different poses at every range. It is experimentally shown
that the proposed algorithm can reach a high recogni-
tion rate in fewer computations. The target recognition
performance of our method is successfully demonstrated
on simulated point cloud data; however, the performance
needs to be validated with real scene data if the condition
will be satisfied in the future. The statistical approach
needs to be improved in order to increase the recognition
rate for the whole algorithm.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 60874093.
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6. C. Gröwall, F. Gustafsson, and M. Millnert, IEEE Trans.
Image Processing 15, 3401 (2006).
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